交易数据 大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
数据处理和分析技术:包括机器学习、数据挖掘、统计分析等技术,用于从大数据中挖掘出有价值的信息和知识。这些技术可以帮助分析人员识别出数据中的模式、趋势和异常,以及进行数据的分类、聚类、预测和推荐等分析。可视化技术:大数据分析结果需要进行可视化展示,以便决策者能够更直观地了解数据的含义和趋势。
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。
Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
分类 分类是一种根本的数据剖析办法,数据依据其特色,可将数据对象划分为不同的部分和类型,再进一步剖析,可以进一步发掘事物的实质。
1、一般来说,在以下情况下,NoSQL 比 SQL 更可取:许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。
2、NOSQL在大数据面前比SQL数据库更占优势。
3、NoSQL 即 Not Only SQL,可直译“不仅仅是 SQL”,这项技术正在掀起一场全新的数据库革命性运动。
1、数据处理工具:Excel 数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。
2、Smartbi作为国内资深专业的BI厂商,定位于一站式大数据服务平台,对接各种业务数据库、数据仓库和大数据平台,进行加工处理、分析挖掘与可视化展现;满足各种数据分析应用需求,如企业报表平台、自助探索分析、地图可视化、移动管理驾驶舱、指挥大屏幕、数据挖掘等。
3、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。SQLServer的最新版本,对中小企业,一些大型企业也可以采用SQLServer数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
4、数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。