具有大专以上学历,或从事统计工作的人员;(2)通过初级笔试、上机考试、报告考核,成绩全部合格。中级数据分析师:(1)具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;(2)通过中级笔试、上机考试,成绩全部合格;(3)通过中级实践应用能力考核。
专业技能要求 统计知识:数据分析师应具备统计学基础知识,了解各种数据收集、处理和分析的方法。 数据分析工具:熟练掌握数据分析工具如Excel、Python等,并能运用相关数据分析库进行数据处理和建模。
数据分析师的基本素质如下:数量分析能力:具备扎实的数学和统计知识,能够理解和应用各种数学和统计方法,包括概率论、假设检验、回归分析等。数据处理和清洗:熟练运用数据处理工具(如SQL、Python、R等),能够对原始数据进行清洗、整理和转换,以确保数据质量和可用性。
具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;(2)通过中级笔试、上机考试,成绩全部合格;(3)通过中级实践应用能力考核。高级数据分析师:(1)研究生以上学历,或从事相关工作五年以上;(2)获得中级数据分析师证书。
初级阶段:具备大专学历或具备统计工作背景的人员,需通过初级笔试、上机考试和报告考核,确保所有成绩合格。 中级阶段:具备本科及以上学历,或持有初级数据分析师证书并有相关工作经验一年以上。需要通过中级笔试和上机考试,以及实践应用能力考核,全部合格后获得中级证书。
编写数据分析报告是对数据分析的总结和介绍。报告内容必须完成呈现数据分析的原因、过程、结果和建议,供决策者参考。另外,我们在写报告时,切记不要只写数据结果,还应该写上明确的结论。
首先,你要学会从数据库或者其它源头获取数据,很多数据分析师仍然依赖于IT人员获取数据,但大数据时代,真的有必要自己动手了,因为依赖他人效率太低了,起码你要会SQL,SQL甚至基本上是为统计取数而生的方便工具,图形化的透视方式也远远没有SQL的表达能力强,这是基本功。
理论知识要宽泛,涉及数学、市场和技术。要求及对数据敏感,包括统计知识、市场研究、模型原理等。常规分析工具的使用,包括数据库、数据挖掘、统计分析工具,常用办公软件(Excel、PPT、思维导图)等等。有一定的业务理解能力,能理解业务背后的商业逻辑。
首先,你必须具备相关的统计知识,大多数数据分析师岗位都会倾向于招数学专业出身的人,因为学数学的人基本都系统的学过数据的分析算法、或者说具备逻辑性很强,能快速的成长为一名数据分析师。
1、第一阶段:初识数据分析 这个阶段是你学习数据分析的第一个月。核心的三本书就是:统计学、R IN ACTION、深入浅出数据分析。第一星期:好好的阅读一下统计学这本教材。按照每天3个小时的时间,一个星期你至少能看完8章。
2、我认为掌握vlookup和数据透视表足够,是最具性价比的两个技巧。学会vlookup,SQL中的join,Python中的merge很容易理解。学会数据透视表,SQL中的group,Python中的pivot_table也是同理,这两个搞定,基本10万条以内的数据统计没啥难度,80%的办公室白领都能秒杀。
3、技能二:掌握数据整理、可视化和报表制作。数据整理,是将原始数据转换成方便实用的格式,实用工具有DataWrangler和R。数据可视化,是创建和研究数据的视觉表现,实用工具有ggvis,D3,vega。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。
4、然后就是不断的循环优化着。分析出问题,确认用户的需求,改进产品,进一步统计并维持提升结果。分析的流程方法大概如此,比较好掌握,但是具体到工作当中,远非这几句话能解释当的,所以慢慢实践成长吧。
5、所以我根据新手的特点,整理出一套循序渐进的书单供大家参考,简简单单4本书让零基础的你也能快速入门,建议小白可以按照本篇的顺序学习。
6、所以小编想做的是像你的朋友一样,推荐一份数据分析入门的极简书单给你,并且帮你深度评测,告诉你什么是最值得读的、不得不读的。《MySQL必知必会》这本书讲解的非常的全面,光是最常用的 SELECT语句就花了12章来细细讲解。